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Abstract Varietal diVerences among ten rice cultivars
showed that stem diameter is a key factor in lodging resis-
tance (measured in terms of pushing resistance). Two near-
isogenic lines (NILs) were selected from a series of
chromosome segment substitution lines developed between
cultivars Nipponbar and Kasalath, one containing a single
stem diameter QTL (sdm8; NIL114), and another with four
stem diameter QTLs (sdm1, sdm7, sdm8, sdm12; NIL28).
Compared with the Nipponbare control, stem diameters
were larger in NIL114 and NIL28 by about 7 and 39%,
respectively. Pushing resistance in NIL28 was signiWcantly
greater than in Nipponbare, but NIL114 was similar to Nip-
ponbare. The two NILs had greater weight of lower stem
and culm wall thickness than Nipponbare. NIL28 had
higher plant height, which is a negative eVect on lodging
resistance, than Nipponbare. The non-structural carbohy-
drate contents of NIL stems were higher than that of Nip-
ponbare, whereas the silicon contents were lower in the
NILs, and cellulose contents were lower only in NIL28.
The basal internodes of the two NILs were signiWcantly
stiVer than those of Nipponbare. These results suggest that
increasing stem diameter in rice breeding programs would
improve lodging resistance, although the combination of
multiple QTLs would be necessary to produce thicker
stems with higher pushing resistance, whereas the higher

plant height could also result from the combination of mul-
tiple QTLs.

Introduction

Lodging is a major problem in the production of cereal crops,
because it causes decreases in yield and quality by reducing
photosynthesis in the canopy, damages vascular bundles by
bending or breaking stem, and causes problem associated
with mechanical harvesting (Weber and Fehr 1966; Kono
1995; Setter et al. 1997). In lowland rice (Oryza sativa L.),
lodging is characterized by stem bending, stem breakage, and
root lodging (Kono 1995). Root lodging occurs in upland
rice or with direct sowing, but is infrequently observed in
common cultivation of lowland rice (Watanabe 1997). Stem
bending type is the main type of lodging in lowland rice. It is
caused by the increase in panicle weight during maturation,
and by environmental eVects (i.e., rain and wind). Stem
breaking occurs at lower internodes (below the third inter-
node from the top) in response to bending higher up the stem
(Hoshikawa and Wang 1990; Islam et al. 2007).

Several methods have been used to assess lodging resis-
tance (Kono 1995, Watanabe 1997). Pushing resistance has
been used primarily as an index of resistance to stem bend-
ing or root lodging in several crops (Terashima et al. 1992;
Fouéré et al. 1995; Won et al. 1998). Terashima et al.
(1992) demonstrated a high positive correlation between
pushing resistance and lodging in paddy Welds (correlation
coeYcient was 0.79). Berry et al. (2003) showed that mea-
suring wheat shoot lodging resistance by rotational dis-
placement, which accounted for a little more than half of
the stem and root lodging.

Pushing resistance in rice is determined by root mor-
phology, stem bending strength, and other characters. There
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is a positive correlation between pushing resistance and
culm or root thickness and root weight in deeper soil layers
(Terashima et al. 1994; Won et al. 1998). Stem weight and
diameter are strongly related to physical strength (Atkins
1938; Zuber et al. 1999). Stem strength is also the product
of its chemical and biochemical components. Generally,
lignin or cellulose determine physical strength, as lower
lignin or cellulose contents cause the culm to be brittle
(Kokubo et al. 1989; Taylor et al. 1999; Jones et al. 2001;
Ma et al. 2002; Tanaka et al. 2003). In the rice mutant brit-
tle culm1 (bc1), the altered biosynthesis of cellulose, hemi-
cellulose, and lignin in culms reduced secondary cell wall
thickness and mechanical strength (Li et al. 2003). Muta-
tions of the COMT gene, which is involved in lignin bio-
synthesis, have a brown midrib3 phenotype in maize
(Vignols et al. 1995), and COMT gene expression in the
developing stem is associated with stem lodging in wheat
(Ma et al. 2002). Cellulose also has qualitative characteris-
tics that relate to the strength of cellulose Wbers, such as
crystallinity (Reddy and Yang 2005). In addition, the accu-
mulated carbohydrate contents of rice stems are related to
lodging resistance (Sato 1957; Takaya and Miyasaka 1983;
Yang et al. 2001), and a greater accumulation of starch
increases the bending strength and stiVness of culms
(Takahashi 1960; Matsuzaki et al. 1972; Kashiwagi et al.
2006). Likewise, higher silicon contents are also related to
physical strength (Idris et al. 1975; Ma and Yamaji 2006).
It has been shown that the locus for pushing resistance in
the lower part of the rice plant (prl5) increases the weight
of the lower stem due to higher carbohydrate contents at
maturity, and consequently improved lodging resistance
(Kashiwagi and Ishimaru 2004).

Analysis of quantitative trait loci (QTLs) can reveal the
genetic basis of relationships among traits, and allows a
comprehensive investigation of the genetic relationships
among morphological and physiological traits (e.g., Ishi-
maru et al. 2001b, c, d). In addition, the use of near-isogenic
lines (NILs) developed by marker-assisted selection is an
eVective method for characterizing QTLs in detail (Lin et al.
2000, 2003; Yano 2001; Kashiwagi and Ishimaru 2004), and
for clarifying the nature of epistatic interactions between
QTLs (Tanksley 1993; Lin et al. 2000). Combining QTL and
physiological analyzes with NIL selection can help clarify
the function of a particular locus (e.g., Ishimaru 2003). Com-
parisons between QTLs for lodging and other traits have
been made in several cereals. In barley, one QTL has been
associated with grain yield and plant height, and reduces
lodging severity (Spaner et al. 1999). Seven wheat and spelt
lodging resistance QTLs correspond with the QTLs for plant
height, culm stiVness, leaf width, leaf-growth, days to ear
emergence, and culm thickness (Keller et al. 1999).

Lodging resistance, which is assessed by the physical
strength of aerial plant parts and the load they must bear, is

clearly determined by various factors, but thus far suitable
targets for genetic improvement of lodging resistance are
not clear. The aim of this study is to identify targets for
genetic improvement of rice lodging resistance. The poten-
tial factors for higher resistance can be inferred from some
of the varietal diVerences among ten rice cultivars. Two
NILs containing resistance-associated QTLs were selected
to determine whether the identiWed phenotype, in this case
stem diameter, could be used to genetically improve lodg-
ing resistance.

Materials and methods

Plant materials for determining varietal diVerences among 
ten rice cultivars

To analyze the potential factors that determine lodging
resistance, ten Indica and Japonica rice cultivars were
divided into three groups according to plant height. The
short group, about 100 cm at maturity was Calrose76, Dee-
geo-woo-gen, IR8, and Nipponbare. The medium group,
about 120 cm was Calrose, Koshihikari, and New plant
type (IR65598-112-2). The tall group, 140 cm and over was
Ai-jiao-nan-te, Canabongbong, and Kasalath. Seeds were
sown in early May 2003 and transplanted into paddies at
Tsukuba, Japan (latitude 36°N), in early June with a single
plant per hill, spaced at 18 £ 30 cm. Six plants of each cul-
tivar were planted per row.

Heading date, morphological traits, and stem characters 
of the ten cultivars

All of the following measurements were taken from Wve
plants from each cultivar. The heading date was recorded
for each cultivar. At the full-ripe stage, plant height, the
height of the second leaf from the Xag leaf (¡2 leaf height),
crown width, tiller number, dry weight of the plant body
above 40 cm (upper plant weight), and dry weight of pani-
cles per stem (panicle weight) were recorded. ¡2 leaf
height was measured the height from the ground to the base
of the second leaf blade. Crown width was measured as the
width of stems per plant at 15 cm height. Dry weights were
measured after oven-drying at 80°C for 3 days.

Stem diameter, weight, and the starch and silicon con-
tents of the lower stem (below 40 cm) were measured at the
full-ripe stage. Plant stems were cut at 40 cm height, and
stem diameter was measured with a slide caliper according
to the method described previously (Kashiwagi and Ishi-
maru 2004). The weight of the lower stem was measured
after desiccation at 80°C for 3 days.

To measure the contents of starch and silicon, dried
lower stem was ground to a powder with a Wonder Blender
123



Theor Appl Genet (2008) 117:749–757 751
(Osaka Chemical Co., Osaka, Japan). Starch was measured
enzymatically according to the method of Ishimaru et al.
(2001a). Fifty milligrams of the powdered lower stem was
reground in liquid nitrogen with a mortar and pestle. The
powdered sample was extracted twice with 80% (v/v) etha-
nol at 80°C and centrifuged at 12,000£g for 5 min. The
pellet was boiled in distilled water for 2 h and then digested
with amyloglucosidase for 15 min at 55°C. The resultant
hexoses were determined by the enzymatic method of
Bergmeyer and Bernt (1974).

Relative silicon contents were assayed with an energy-
dispersive X-ray Xuorescence spectrometer (Element Ana-
lyzer JSX-3201, Jeol, Tokyo, Japan) according to a method
reported previously (Kashiwagi and Ishimaru 2004). Pow-
dered lower stem (200 mg) was formed into a 13-mm diam-
eter tablet with a hydraulic press (Evacuable KBr Die,
Shimadzu, Kyoto, Japan). The measurement was performed
at 30 kV for 600 s and replicated three times for each sam-
ple. Silicon was analyzed at a peak of 1.739 keV, and the
relative content was calculated as the counts-per-second
ratio using the method of Vázquez et al. (1999).

Measurement of pushing resistance

Whole plant pushing resistance was measured with a pros-
trate tester (Daiki Rika Kogyou Co., Tokyo, Japan) at the
full-ripe stage, according to a method reported previously
(Kashiwagi and Ishimaru 2004). The prostrate tester was
set perpendicularly to the whole plant at 20 cm height, and
pushing resistance was measured when plants inclined to
45°. For measurements of pushing resistance, individual
tests were done on each of Wve plants.

Plant materials for NILs containing QTLs with potential 
genetic targets

Using marker-assisted selection, chromosome segment sub-
stitution lines were produced which were advanced back-
cross progeny with Nipponbare as a recurrent parent and
Kasalath as a donor parent (Yano 2001). Two NILs (NIL28
and NIL114) were selected from these lines based on QTL
data for stem diameter previously reported (Kashiwagi and
Ishimaru 2004). NIL28 carries Kasalath chromosomal seg-
ments with four QTLs for stem diameter on chromosomes
1, 7, 8, and 12 (tentatively named sdm1, sdm7, sdm8, and
sdm12, respectively), all QTLs have positive eVects associ-
ated with the kasalath allele (Kashiwagi and Ishimaru
2004). NIL114 carries one QTL on chromosome 8 (sdm8)
with the second highest LOD score among QTLs for stem
diameter in the genetic background of Nipponbare. The
selected NILs and Nipponbare as a control were sown in
early May 2002 and 2003, and the seedlings were trans-
planted to paddies in Tsukuba in early June with a single

plant per hill, spaced at 18 £ 30 cm. Each NIL was planted
in three rows, with four plants per row in 2002, and in two
rows with eight plants per row in 2003.

Morphological characters of NILs

Stem diameters of nine plants in each line were measured at
the full-ripe stage in 2002 and 2003, as described above. The
NIL eVects on morphological characters other than stem
diameter were veriWed in 2002. Plant height, ¡2 leaf height,
tiller number, crown width, dry weights of panicle per stem
and lower stem were measured at the full-ripe stage, as
described above. These measurements used nine plants in
each line. To verify the eVect of the NILs on culm charac-
ters, culm diameter and wall thickness were measured at the
full-ripe stage in 2003. Culm diameter was measured at the
central part of the second and third internodes from the top
(internodes II and III) and the basal internode. The wall
thickness of internode III was measured at the central part of
the internode. Four or more plants in each line were used for
the measurement of culm diameter and wall thickness.

Analysis of stem chemical components in NILs

To analyze the chemical components of the lower stem and
internode III of the culm, samples were taken at the full-
ripe stage in 2002 and 2003, respectively, and dried at 80°C
for 3 days. Dried samples were then ground to a powder
with a Wonder Blender (Osaka Chemical Co., Osaka,
Japan). Carbohydrate contents were measured enzymati-
cally according to the method of Ishimaru et al. (2001a).
Powdered lower stem were extracted in the same way as
starch described above. The supernatant was collected,
dried in a vacuum, and used for the determinations of
sucrose and hexoses by the enzymatic method of Berg-
meyer and Bernt (1974). Starch content was determined as
described above. Nine plants in each line were used to ana-
lyze carbohydrates in 2002.

The relative silicon contents of the lower stem were ana-
lyzed with an energy-dispersive X-ray Xuorescence spec-
trometer, as described above. Nine plants in each line were
used to measure silicon contents in 2002.

Four plants in each line were used to measure the con-
tents of structural carbohydrates in 2003. Lignin content as
a percent of total dry weight of internode III was deter-
mined using a modiWed version of Japan TAPPI (Technical
Association of the Pulp and Paper Industry) test method no.
61: 2000. Dried internode III was ground to a powder with
a Wonder Blender (Osaka Chemical Co.). The powder was
weighed, degreased in a solution of 70% benzene, 30% eth-
anol, and steeped in 72% sulfuric acid for 4 h. The diluted
sample solution was boiled for 2 h, and the dried Wltrate
was weighed to calculate the lignin content.
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The cellulose contents of internode III were determined
using a modiWed version of Japan TAPPI test method no.
60: 2000. Before the measurement, internode III was
ground to a powder, extracted with ethanol–benzene (1:2,
v/v), and then air-dried. The extracted powder was chlori-
nated with 0.3% chlorine water for 5 min at room tempera-
ture. After Wltration through a glass Wlter P100, the residue
was washed successively with water, 3% sulfurous acid,
and then water. The washed residue was transferred to a
beaker with 2% sodium sulWte, and the mixture was boiled
for 30 min. The residue was Wltered through a glass Wlter
P100 and washed in hot and then cool water. The steps of
the treatment process from chlorine water to sodium sulWte
were repeated several times until the residue became mark-
edly white. Finally, the white residue was bleached with
0.1% potassium permanganate for 10 min. The residual cel-
lulose was Wltered and washed with 3% sulfurous acid, hot
water, and ethanol. The cellulose was dried at 105°C for 4 h
and weighed.

Measurements of culm cellulose crystallinity

Internodes II, III, and the basal culm internode were sampled
at the full-ripe stage in 2003. The culms were bleached in the
rod state with 0.5% NaClO2 (buVered at pH 4.7 in acetate
buVer) for a week at room temperature. Samples were disin-
tegrated into small fragments, and then approximately 50 mg
of each sample was pressed into a 10-mm diameter disk at
9,800 kPa for 1 min. Wide-angle X-ray diVraction (WAXD)
patterns were measured using nickel-Wltered CuK� radiation
produced by a RINT-2500F X-ray generator (Rigaku, Tokyo,
Japan) with a 1-mm diameter pinhole collimator. Each
WAXD image of a sample was recorded on a Xat imaging
plate (BAS-SR 127 mm £ 127 mm; FUJIFILM Co., Tokyo,
Japan) at 40 kV and 50 mA for 60 min at a distance of
60 mm; images were analyzed using R-AXIS-DS3 system
(Rigaku). WAXD intensity curves were drawn using a trans-
mission method with a scintillation counter at 40 kV and
200 mA, 2� = 5°–35°, scan speed = 0.5° min¡1, and scan
step = 0.02°. Percent cellulose crystallinity was estimated
from the ratio of the areas of the crystalline and noncrystal-
line regions in the WAXD intensity curve of the disk sample
(Togawa and Kondo 1999) from a bulk sample of Wve plants
in each line.

Measurement of lodging resistance in NILs

Pushing resistances and culm stiVness were analyzed at the
full-ripe stage as lodging resistance. Pushing resistance of
the whole plant was measured in 2002, as described above.
Likewise, pushing resistance of the lower part of the plant
was measured in 2002 after the stem was cut at 40 cm
height and the upper parts were removed. Six or more

plants in each line were used to measure pushing resistance.
Culm stiVness was measured by a compression test with a
Tensilon UTM-II-20 (Toyo Baldwin Co., Ltd., Tokyo,
Japan) in 2003, according to a method reported previously
(Kashiwagi et al. 2006). The central part of a fresh culm
was compressed with a 50-mm diameter compression jig at
a constant velocity of 2 mm min¡1. Culm stiVness was
recorded at the early stage of the compression. The mea-
surements of culm stiVness used 16 plants in each line.

Statistical analysis

Data of morphological traits, chemical components, and
physical strengths were examined using four or more indi-
vidual plants for replication. Only cellulose crystallinity was
measured using a bulk sample of Wve plants. Accordingly,
data of cellulose crystallinity did not have a standard error
and statistical diVerence. Statistical analyzes were performed
using Microsoft Excel 2004 (ver. 11.3.7), for correlation and
signiWcant diVerence. SigniWcant diVerences between means
were analyzed by Students t test at the level of ***P0.05.

Results

Correlation between pushing resistance and other traits

Among the ten cultivars examined, stem diameter
(r = 0.805, P < 0.01) and lower stem weight (r = 0.718,
P < 0.05) were signiWcantly correlated with pushing resis-
tance of the whole plant (Table 1). None of other general
characteristics measured (heading date, plant height, ¡2
leaf height, crown width, tiller number, upper plant weight,

Table 1 Correlation (r) between pushing resistance of the whole plant
and morphological traits and stem characters of ten cultivars

**, * SigniWcant levels of P < 0.01 and P < 0.05, respectively

Traits Pushing resistance 
of the whole plant

Heading date 0.570

Morphological traits

Plant height 0.562

¡2 leaf height 0.333

Crown width 0.272

Tiller number 0.102

Upper plant weight 0.597

Panicle weight 0.344

Stem characters

Stem diameter 0.805**

Weight of lower stem 0.718*

Starch content in lower stem ¡0.191

Silicon content in lower stem ¡0.513
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and number of panicles) were correlated with pushing resis-
tance of the whole plant. Starch and silicon contents in the
lower stem were not signiWcantly correlated with pushing
resistance (P > 0.05).

Stem and culm diameters in NILs

In 2002, stem diameter at 40 cm in Nipponbare was
3.79 § 0.10 mm, and stem diameters in NIL114 (one QTL)
and NIL28 (four QTLs) were 1.06 and 1.35 times as high as
Nipponbare, respectively (Fig. 1). In 2003, stem diameter
in Nipponbare was 3.39 § 0.07 mm, and stem diameters in
NIL117 and NIL28 were 1.08 and 1.42 times as high as
Nipponbare, respectively. In each year, stem diameter was
signiWcantly diVerent between Nipponbare and the NILs
(P < 0.05). The diameters of internode II, internode III, and
the basal internode in Nipponbare were 2.58 § 0.09,
3.16 § 0.11, and 3.82 § 0.11 mm, respectively, in 2003
(Fig. 1). The diameters of internodes II and III in NIL114
were signiWcantly larger than in Nipponbare (P < 0.01), but
there was no signiWcant diVerence between their basal
internode diameters (P > 0.05). Nipponbare and NIL28 had
signiWcant diVerences for all internodes (P < 0.01). Com-
pared between NILs, the diameters of all internodes in
NIL28 were signiWcantly larger than in NIL114.

Morphological characters of NILs

To examine the eVects of stem diameter QTLs on other
morphological characters, the selected NILs were com-
pared with Nipponbare as the control (Table 2). NIL114
had a signiWcantly greater crown width, panicle weight per
stem, lower stem weight, and culm wall thickness com-
pared with Nipponbare. NIL28 had signiWcantly greater
plant height, ¡2 leaf height, crown width, panicle weight
per stem, lower stem weight, and culm wall thickness, and
a signiWcantly smaller tiller number compared with Nip-
ponbare. NIL28 had signiWcantly greater lower stem
weights and thinner culm walls than NIL114.

NILs stem chemical components

The starch contents in NIL114 and NIL28 were 584.4 and
1,038.0 �mol hexose g¡1 DW higher than in Nipponbare
(P < 0.001) (Table 2). The contents of sucrose and hexoses
in NIL114 were 156.3 and 24.9 �mol hexose g¡1 DW
higher than in Nipponbare (P < 0.05), and in NIL28 were
339.3 and 54.5 �mol hexose g¡1 DW higher than in Nip-
ponbare (P < 0.01). NIL28 stem had higher nonstructural
carbohydrate contents in 2003 than Nipponbare and
NIL114 stems (data not shown). The relative contents of
silicon in NIL114 and NIL28 were 11.5 and 22.3 counts s¡1

lower than in Nipponbare, respectively (P < 0.001). There
were no signiWcant diVerences in lignin content between
Nipponbare and the selected NILs. The cellulose content in
NIL28 was signiWcantly lower than that in Nipponbare
(decrease of 7% DW).

Degree of crystallinity of culm cellulose

In Nipponbare, NIL114, and NIL28, the basal internodes
had the highest degree of cellulose crystallinity (42.0, 41.4,
and 35.6%, respectively) and internode III had the lowest
(29.9, 29.3, and 28.0%, respectively; Table 3). Among the
three lines, the cellulose crystallinity of NIL28 was the
lowest in each internode.

Contribution of QTLs for stem diameter 
to lodging resistance

Lodging resistance was tested by measuring the pushing
resistance of the whole plant, the pushing resistance of the
lower part of the stem, and culm stiVness (Fig. 2). The
pushing resistances of the whole plant and the lower part in
Nipponbare were 0.34 § 0.02 and 0.61 § 0.05 N cm¡2,
respectively. The pushing resistance of the whole plant and
the lower part of NIL28 were 0.24 and 0.45 N cm¡2 higher
than in Nipponbare (P < 0.01). There was no signiWcant
diVerence in the pushing resistance of the whole plant or

Fig. 1 Diameters of stem and culm internodes in Nipponbare (con-
trol), NIL114 and NIL28. Stems were measured in 2002 and 2003, and
culm internodes were measured in 2003. The data represent the mean
of nine or more independent plants in each line; vertical bars indicate
standard errors. DiVerent letters above columns indicate statistically
signiWcant diVerences between means (P < 0.05, Students t test)
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the lower part of the stem between NIL114 and Nipponbare
(P > 0.05). NIL28 had 0.23 and 0.32 N cm¡2 higher push-
ing resistances for the whole plant and the lower part,
respectively, than NIL114 (P < 0.05).

The stiVnesses of internode II, internode III, and the
basal internode were 0.45 § 0.04, 0.68 § 0.04, and
0.63 § 0.05 kg mm¡1, respectively in Nipponbare, those in
NIL114 were 0.12, 0.18, and 0.25 kg mm¡1 higher than in
Nipponbare (P < 0.05), and those in NIL28 were 0.18, 0.15,
and 0.38 kg mm¡1 higher (P < 0.05). There were no signiW-
cant diVerences in culm stiVness between NIL114 and
NIL28.

Discussion

To clarify potential genetic targets for improvement in
lodging resistance, we analyzed various morphological and
stem characters of ten rice cultivars. Only stem diameter
was positively correlated with pushing resistance (Table 1).
Field studies of wheat and soybean have shown that lodg-
ing degree (high score means lodged) was negatively corre-
lated with stem diameter (Mancuso and Caviness 1991;

Table 2 Morphological charac-
ters and components in stems of 
Nipponbare, NIL114 and NIL28

Nipponbare NIL114 NIL28

QTL for stem diameter sdm8 sdm1, sdm7, sdm8, sdm12

Morphological traits

Plant height (cm) 104.9 § 1.2a 107.2 § 1.3a 134.9 § 1.3b

¡2 leaf height (cm) 36.6 § 0.7a 36.5 § 0.8a 56.1 § 1.2b

Tiller number 18.2 § 0.7a 18.2 § 1.0a 13.4 § 0.7b

Crown width (mm) 63.3 § 2.7a 72.5 § 3.4b 75.6 § 3.2b

Panicle weight per stem (g) 2.0 § 0.1a 2.4 § 0.0b 2.3 § 0.1b

Weight of lower stem (g) 0.33 § 0.02a 0.57 § 0.03b 0.91 § 0.06c

Culm wall thickness (mm) 0.54 § 0.05a 0.76 § 0.02b 0.71 § 0.01c

Stem chemical components

Starch (�mol hexose g¡1 DW) 208.0 § 59.7a 792.4 § 143.2b 1,246.0 § 126.6c

Sucrose (�mol hexose g¡1 DW) 332.1 § 59.7a 488.4 § 65.7b 671.4 § 41.5c

Hexoses (�mol hexose g¡1 DW) 83.9 § 11.2a 108.8 § 5.8b 138.4 § 9.7c

Silicon (counts s¡1) 46.7 § 2.4a 35.2 § 1.5b 24.4 § 1.3c

Lignin (DW%)a 11.7 § 0.2a 13.2 § 0.8a 10.8 § 0.7a

Cellulose (DW%)a 39.9 § 1.3a 38.1 § 0.8a 32.9 § 0.5b

The data are expressed as 
mean § SE of four or more 
plants, diVerent letters following 
datum indicate statistically sig-
niWcant diVerences at P < 0.05 
between mean (Students t test), 
superscript “a” indicates the 
traits measured in 2003

Table 3 Crystallinity of culm cellulose in Nipponbare, NIL114 and
NIL28

The values were determined with a bulk sample of Wve plants, mean
indicates the mean value § SE across three internodes

Nipponbare NIL114 NIL28

QTL for stem diameter sdm8 sdm1, sdm7, 
sdm8, sdm12

Cellulose crystallinity (%)

Internode II 33.7 35.8 28.7

Internode III 29.9 29.3 28.0

Basal internode 42.0 41.4 35.6

Mean 35.2 § 3.6 35.5 § 3.5 30.8 § 2.4

Fig. 2 Pushing resistance and 
culm stiVness of Nipponbare 
(control), NIL114 and NIL28. 
The data represent the mean of 
six or more independent plants 
in each line; vertical bars indi-
cate standard errors. DiVerent 
letters above columns indicate 
statistically signiWcant diVer-
ences between means (P < 0.05, 
Students t test)
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Zuber et al. 1999; Tripathi et al. 2003). Keller et al. (1999)
reported that two QTLs for lodging resistance corresponded
with QTLs for culm thickness in a population between
wheat and spelt. These Wndings suggest that stem diameter
is an important trait that underlies in lodging resistance, as
veriWed by pushing resistance.

Plant height has been proposed as the critical factor for
lodging resistance. However, there was no correlation
between plant height and pushing resistance among the ten
cultivars tested (Table 1), indicating that, at least in these
ten varieties, pushing resistance was not related with plant
height. In this study, pushing resistance was measured at a
Wxed 20 cm height from the ground. This method would
mainly assess the physical strength of basal parts. Berry
et al. (2003) suggested that a modiWed test for lodging
resistance in which pushing height was adjusted to 50% of
crop height appeared to account for the eVects of both stem
strength and height on lodging resistance appeared the most
useful for providing reasonable reliable data in a short time.
Higher plant height makes the center of gravity higher
(Watanabe 1997) and the leverage force greater. Pushing
resistance indicates the cumulative physical strength of
basal parts rather than the height of the center of gravity or
the leverage force by the upper part of the plant. Improved
lodging resistance thus would seem to have two seemingly
unlinked targets: reduced plant height, and pushing resis-
tance.

The NIL QTLs clearly aVect the internode diameters
(Fig. 1). NIL28, which contains four QTLs, had greater
diameter at all internodes compared with NIL114 with one
QTL (sdm8). Based on the results of NIL114, it appears
that sdm8 controls the diameters of internodes II and III,
but not the basal internode. Interaction among plural loci or
genes can make a greater eVect on the trait than the eVect of
a single, e.g., the interaction of two QTLs delaying heading
under short day-length (Lin et al. 2000) and of two dwarf
genes (Mackill and Rutger 1979). Multiple loci may thus
result in a greater stem diameter. If so, then a single locus
may not be expected to result in a striking increase in stem
diameter.

Culm diameter in wheat and rice is correlated with
breaking strength (Atkins 1938; Ohe et al. 1996). Pushing
resistances of the whole plant and of the lower part in
NIL28 were signiWcantly higher than in Nipponbare and
NIL114 (Fig. 2). Therefore, a combination of multiple
QTLs for stem diameter is likely to be required to improve
lodging resistance. In addition, our Wndings suggest that an
increase in basal internode diameter could contribute to
greater pushing resistance.

NIL28 also had a greater lower stem weight (Table 2).
The initial experiment in this study indicated that the
weight of lower stems positively correlates with pushing
resistance of the whole plant (Table 1). In agreement with a

previous studies, stem weight is generally positively corre-
lated with stem diameter (Atkins 1938; Tripathi et al.
2003), Zuber et al. (1999) reported that stem diameter and
stem weight (mg cm¡1) were indicative of lodging resis-
tance in wheat. Thus, the thicker and heavier stem of NIL28
is probably responsible for its greater pushing resistance.

Culm wall thickness was highly negatively correlated
with lodging score (high score means lodged) in Weld stud-
ies of wheat (Tripathi et al. 2003). Both of the NILs exam-
ined in this study had thicker culm walls than Nipponbare,
and NIL114 had thicker walls than NIL28 (Table 2, Fig. 2).
This indicates that QTL (sdm8) may contain, or be located
close to, loci for culm wall thickness. sdm8 would appear to
be a good target for further genetic analysis for improving
culm stiVness. There was a signiWcant diVerence of culm
wall thickness between two NILs with sdm8. Because culm
wall thickness is determined by internode diameter and
lumen, the thinner culm wall of NIL28, as compared with
NIL114, might be due to a change in the diameters of inter-
node and lumen by QTLs other than sdm8.

The heavier stem of NIL 28 is due to the nonstructural
carbohydrates, especially starch, which are higher than in
NIL114 (Table 2). This trait was stable in 2 years (data not
shown). Starch contents of the culm can also be partly
responsible for lodging resistance, because rice tends to
lodge when the starch contents of culm parenchymatous
cells is very low (Sato 1957), and the ability of the basal
culm to re-accumulate starch during the later stages of
maturity contribute to lodging resistance of breaking type
rice (Yagi 1983). In fact, wheat cultivars with strong lodg-
ing resistance remobilize a smaller proportion of pre-
stored assimilates into the grain (Yang et al. 2000), and the
NIL with a QTL for greater pushing resistance (prl5) had
the ability to re-accumulate high levels of carbohydrates in
the culm (Kashiwagi et al. 2006). It is also possible that
higher levels of nonstructural carbohydrates would
increase culm turgor pressure, and that culms containing
these nonstructural carbohydrates are wrapped in the leaf
sheaths with delayed senescence, thus increasing stem
strength (Takaya and Miyasaka 1983). The contribution of
nonstructural carbohydrates to lodging resistance would
thus be via the physical strength of cell tissue in culms or
leaf sheaths. However, at present the function of nonstruc-
tural carbohydrates on stem physical strength is not clear.
Further investigation of the anatomical contribution of
nonstructural carbohydrates is needed for clariWcation of
this point.

The structural carbohydrates (cellulose and lignin) and
silicon are largely responsible for the material strength of
culms. Cellulose and lignin contents correlate with bending
and breaking resistance in barley and rice culms (Kokubo
et al. 1989; Ookawa and Ishihara 1993; Li et al. 2003). In
addition, cellulose crystallinity correlates with increased
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Wber strength (Reddy and Yang 2005). Silicon is deposited
in siliciWed cells in the epidermis and vascular tissues of
leaf blades, leaf sheaths, and stems, and enhances the
strength and rigidity of cell walls, thus increasing lodging
resistance (Ma and Yamaji 2006). Despite their greater
physical strength, the NILs did not have higher amounts of
culm structural carbohydrates or silicon, nor did they have
higher cellulose crystallinity (Tables 2, 3). The greater
culm stiVness of the NILs is thus not a product of the quan-
titative or qualitative diVerences in their cellulose, lignin, or
silicon.

The NILs used in this study had signiWcantly greater
stem diameters and physical strength. These NILs had sev-
eral other altered morphological traits and stem compo-
nents. It is uncertain whether these eVects are pleiotropic or
are caused by other QTLs, which could be separated by fur-
ther backcrossing. The results of this study suggest the pos-
sibility that QTLs for stem diameter concomitantly increase
stem weight, culm wall thickness, stem nonstructural car-
bohydrates, and thus cumulatively result in greater physical
strength. In addition, these same QTLs could also make
higher plant height, lower tiller number, and greater crown
width. Tall plant and poor tillering have negative eVects on
lodging resistance and grain yield, thus stem diameter
QTLs may not be the best target for rice breeding. How-
ever, there was no overlap between QTLs for increased
stem diameter and QTLs for plant height, tiller number, and
crown width (Kashiwagi and Ishimaru 2004). The NILs had
long overlapping chromosomal segments with QTLs for
stem diameter, and apparently superXuous regions. Further
deWnition of the relationship between QTLs for stem diam-
eter and other traits, especially plant height and tiller num-
ber, would require a series of NILs containing only the
chromosomal segment or segments responsible for stem
diameter, and each of the other QTLs in various combina-
tions.

In conclusion, stem diameter is currently the potential
target in breeding for better lodging resistance. Multiple
QTLs for stem diameter from cv. Kasalath was required for
the best pushing resistance. For more eYcient breeding,
further studies are required to analyze QTLs for stem diam-
eter using NILs with less DNA Xanking the diameter QTL
and cultivars with thicker stems, e.g., New plant type lines
developed by the International Rice Research Institute
(Peng et al. 1999), and to verify the contribution of single
QTL for thicker stem towards lodging resistance.
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